Перевод: со всех языков на все языки

со всех языков на все языки

naturalized subject

  • 1 naturalized subject

    naturalized subject eingebürgerter Staatsangehöriger m, eingebürgerter Betroffener m

    English-german law dictionary > naturalized subject

  • 2 naturalized, subject

    sujet m naturalisé

    English-French legislative terms > naturalized, subject

  • 3 натурализованный подданный

    Новый русско-английский словарь > натурализованный подданный

  • 4 натурализованный подданный

    Русско-английский большой базовый словарь > натурализованный подданный

  • 5 натурализовать

    Русско-английский большой базовый словарь > натурализовать

  • 6 натурализовать

    Русско-английский военно-политический словарь > натурализовать

  • 7 натурализовать

    Бизнес, юриспруденция. Русско-английский словарь > натурализовать

  • 8 урожденный подданный

    Бизнес, юриспруденция. Русско-английский словарь > урожденный подданный

  • 9 Cockerill, William

    SUBJECT AREA: Textiles
    [br]
    b. 1759 Lancashire, England
    d. 1832 near Aix-la-Chapelle, France (now Aachen, Germany)
    [br]
    English (naturalized Belgian c. 1810) engineer, inventor and an important figure in the European textile machinery industry.
    [br]
    William Cockerill began his career in Lancashire by making "roving billies" and flying shuttles. He was reputed to have an extraordinary mechanical genius and it is said that he could make models of almost any machine. He followed in the footsteps of many other enterprising British engineers when in 1794 he went to St Petersburg in Russia, having been recommended as a skilful artisan to the Empress Catherine II. After her death two years later, her successor Paul sent Cockerill to prison because he failed to finish a model within a certain time. Cockerill, however, escaped to Sweden where he was commissioned to construct the locks on a public canal. He attempted to introduce textile machinery of his own invention but was unsuccessful and so in 1799 he removed to Verviers, Belgium, where he established himself as a manufacturer of textile machinery. In 1802 he was joined by James Holden, who before long set up his own machine-building business. In 1807 Cockerill moved to Liège where, with his three sons (William Jnr, Charles James and John), he set up factories for the construction of carding machines, spinning frames and looms for the woollen industry. He secured for Verviers supremacy in the woollen trade and introduced at Liège an industry of which England had so far possessed the monopoly. His products were noted for their fine craftsmanship, and in the heyday of the Napoleonic regime about half of his output was sold in France. In 1813 he imported a model of a Watt steam-engine from England and so added another range of products to his firm. Cockerill became a naturalized Belgian subject c. 1810, and a few years later he retired from the business in favour of his two younger sons, Charles James and John (b. 30 April 1790 Haslingden, Lancashire, England; d. 19 June 1840 Warsaw, Poland), but in 1830 at Andenne he converted a vast factory formerly used for calico printing into a paper mill. Little is known of his eldest son William, but the other two sons expanded the enterprise, setting up a woollen factory at Berlin after 1815 and establishing at Seraing-on-the-Meuse in 1817 blast furnaces, an iron foundry and a machine workshop which became the largest on the European continent. William Cockerill senior died in 1832 at the Château du Behrensberg, the residence of his son Charles James, near Aix-la-Chapelle.
    [br]
    Further Reading
    W.O.Henderson, 1961, The Industrial Revolution on the Continent, Manchester (a good account of the spread of the Industrial Revolution in Germany, France and Russia).
    RTS / RLH

    Biographical history of technology > Cockerill, William

  • 10 Kapp, Gisbert Johann Eduard Karl

    SUBJECT AREA: Electricity
    [br]
    b. 2 September 1852 Mauer, Vienna, Austria
    d. 10 August 1922 Birmingham, England
    [br]
    Austrian (naturalized British in 1881) engineer and a pioneer of dynamo design, being particularly associated with the concept of the magnetic circuit.
    [br]
    Kapp entered the Polytechnic School in Zurich in 1869 and gained a mechanical engineering diploma. He became a member of the engineering staff at the Vienna International Exhibition of 1873, and then spent some time in the Austrian navy before entering the service of Gwynne \& Co. of London, where he designed centrifugal pumps and gas exhausters. Kapp resolved to become an electrical engineer after a visit to the Paris Electrical Exhibition of 1881 and in the following year was appointed Manager of the Crompton Co. works at Chelmsford. There he developed and patented the dynamo with compound field winding. Also at that time, with Crompton, he patented electrical measuring instruments with over-saturated electromagnets. He became a naturalized British subject in 1881.
    In 1886 Kapp's most influential paper was published. This described his concept of the magnetic circuit, providing for the first time a sound theoretical basis for dynamo design. The theory was also developed independently by J. Hopkinson. After commencing practice as a consulting engineer in 1884 he carried out design work on dynamos and also electricity-supply and -traction schemes in Germany, Italy, Norway, Russia and Switzerland. From 1891 to 1894 much of his time was spent designing a new generating station in Bristol, officially as Assistant to W.H. Preece. There followed an appointment in Germany as General Secretary of the Verband Deutscher Electrotechniker. For some years he edited the Electrotechnische Zeitschrift and was also a part-time lecturer at the Charlottenberg Technical High School in Berlin. In 1904 Kapp was invited to accept the new Chair of Electrical Engineering at the University of Birmingham, which he occupied until 1919. He was the author of several books on electrical machine and transformer design.
    [br]
    Principal Honours and Distinctions
    Institution of Civil Engineers Telford Medal 1886 and 1888. President, Institution of Electrical Engineers 1909.
    Bibliography
    10 October 1882, with R.E.B.Crompton, British patent no. 4,810; (the compound wound dynamo).
    1886, "Modern continuous current dynamo electric machines and their engines", Proceedings of the Institution of Civil Engineers 83: 123–54.
    Further Reading
    D.G.Tucker, 1989, "A new archive of Gisbert Kapp papers", Proceedings of the Meeting on History of Electrical Engineering, IEE 4/1–4/11 (a transcript of an autobiography for his family).
    D.G.Tucker, 1973, Gisbert Kapp 1852–1922, Birmingham: Birmingham University (includes a bibliography of his most important publications).
    GW

    Biographical history of technology > Kapp, Gisbert Johann Eduard Karl

  • 11 Mond, Ludwig

    SUBJECT AREA: Chemical technology
    [br]
    b. 7 March 1839 Cassel, Germany
    d. 11 December 1909 London, England
    [br]
    German (naturalized English) industrial chemist.
    [br]
    Born into a prosperous Jewish merchant family, Mond studied at the Polytechnic in Cassel and then under the distinguished chemists Hermann Kolbe at Marburg and Bunsen at Heidelberg from 1856. In 1859 he began work as an industrial chemist in various works in Germany and Holland. At this time, Mond was pursuing his method for recovering sulphur from the alkali wastes in the Leblanc soda-making process. Mond came to England in 1862 and five years later settled permanently, in partnership with John Hutchinson \& Co. at Widnes, to perfect his process, although complete success eluded him. He became a naturalized British subject in 1880.
    In 1872 Mond became acquainted with Ernest Solvay, the Belgian chemist who developed the ammonia-soda process which finally supplanted the Leblanc process. Mond negotiated the English patent rights and set up the first ammoniasoda plant in England at Winnington in Cheshire, in partnership with John Brunner. After overcoming many difficulties by incessant hard work, the process became a financial success and in 1881 Brunner, Mond \& Co. was formed, for a time the largest alkali works in the world. In 1926 the company merged with others to form Imperial Chemical Industries Ltd (ICI). The firm was one of the first to adopt the eight-hour day and to provide model dwellings and playing fields for its employees.
    From 1879 Mond took up the production of ammonia and this led to the Mond producer-gas plant, patented in 1883. The process consisted of passing air and steam over coal and coke at a carefully regulated temperature. Ammonia was generated and, at the same time, so was a cheap and useful producer gas. Mond's major discovery followed the observation in 1889 that carbon monoxide could combine with nickel in its ore at around 60°C to form a gaseous compound, nickel carbonyl. This, on heating to a higher temperature, would then decompose to give pure nickel. Mond followed up this unusual way of producing and purifying a metal and by 1892 had succeeded in setting up a pilot plant to perfect a large-scale process and went on to form the Mond Nickel Company.
    Apart from being a successful industrialist, Mond was prominent in scientific circles and played a leading role in the setting up of the Society of Chemical Industry in 1881. The success of his operations earned him great wealth, much of which he donated for learned and charitable purposes. He formed a notable collection of pictures which he bequeathed to the National Gallery.
    [br]
    Principal Honours and Distinctions
    FRS 1891.
    Bibliography
    1885, "On the origin of the ammonia-soda process", Journal of the Society of Chemical Industry 4:527–9.
    1895. "The history of the process of nickel extraction", Journal of the Society of Chemical Industry 14:945–6.
    Further Reading
    J.M.Cohen, 1956, The Life of Ludwig Mond, London: Methuen. Obituary, 1918, Journal of the Chemical Society 113:318–34.
    F.C.Donnan, 1939, Ludwig Mond 1839–1909, London (a valuable lecture).
    LRD

    Biographical history of technology > Mond, Ludwig

  • 12 Renold, Hans

    [br]
    b. 31 July 1852 Aarau, Switzerland
    d. 2 May 1943 Grange-over-Sands, Lancashire, England
    [br]
    Swiss (naturalized British 1881) mechanical engineer, inventor and pioneer of the precision chain industry.
    [br]
    Hans Renold was educated at the cantonal school of his native town and at the Polytechnic in Zurich. He worked in two or three small workshops during the polytechnic vacations and served an apprenticeship of eighteen months in an engineering works at Neuchâtel, Switzerland. After a short period of military service he found employment as a draughtsman in an engineering firm at Saint-Denis, near Paris, from 1871 to 1873. In 1873 Renold moved first to London and then to Manchester as a draughtsman and inspector with a firm of machinery exporters. From 1877 to 1879 he was a partner in his own firm of machine exporters. In 1879 he purchased a small firm in Salford making chain for the textile industry. At about this time J.K.Starley introduced the "safety" bicycle, which, however, lacked a satisfactory drive chain. Renold met this need with the invention of the bush roller chain, which he patented in 1880. The new chain formed the basis of the precision chain industry: the business expanded and new premises were acquired in Brook Street, Manchester, in 1881. In the same year Renold became a naturalized British subject.
    Continued expansion of the business necessitated the opening of a new factory in Brook Street in 1889. The factory was extended in 1895, but by 1906 more accommodation was needed and a site of 11 ½ acres was acquired in the Manchester suburb of Burnage: the move to the new building was finally completed in 1914. Over the years, further developments in the techniques of chain manufacture were made, including the invention in 1895 of the inverted tooth or silent chain. Renold made his first visit to America in 1891 to study machine-tool developments and designed for his own works special machine tools, including centreless grinding machines for dealing with wire rods up to 10 ft (3 m) in length.
    The business was established as a private limited company in 1903 and merged with the Coventry Chain Company Ltd in 1930. Good industrial relations were always of concern to Renold and he established a 48-hour week as early as 1896, in which year a works canteen was opened. Joint consultation with shop stewards date2 from 1917. Renold was elected a Member of the Institution of Mechanical Engineers in 1902 and in 1917 he was made a magistrate of the City of Manchester.
    [br]
    Principal Honours and Distinctions
    Honorary DSc University of Manchester 1940.
    Further Reading
    Basil H.Tripp, 1956, Renold Chains: A History of the Company and the Rise of the Precision Chain Industry 1879–1955, London.
    J.J.Guest, 1915, Grinding Machinery, London, pp. 289, 380 (describes grinding machines developed by Renold).
    RTS

    Biographical history of technology > Renold, Hans

  • 13 Ericsson, John

    [br]
    b. 31 July 1803 Farnebo, Sweden
    d. 8 March 1899 New York, USA
    [br]
    Swedish (naturalized American 1848) engineer and inventor.
    [br]
    The son of a mine owner and inspector, Ericsson's first education was private and haphazard. War with Russia disrupted the mines and the father secured a position on the Gotha Canal, then under construction. He enrolled John, then aged 13, and another son as cadets in a corps of military engineers engaged on the canal. There John was given a sound education and training in the physical sciences and engineering. At the age of 17 he decided to enlist in the Army, and on receiving a commission he was drafted to cartographic survey duties. After some years he decided that a career outside the Army offered him the best opportunities, and in 1826 he moved to London to pursue a career of mechanical invention.
    Ericsson first developed a heat (external combustion) engine, which proved unsuccessful. Three years later he designed and constructed the steam locomotive Novelty, which he entered in the Rainhill locomotive trials on the new Liverpool \& Manchester Railway. The engine began by performing promisingly, but it later broke down and failed to complete the test runs. Later he devised a self-regulating lead (1835) and then, more important and successful, he invented the screw propeller, patented in 1835 and installed in his first screw-propelled ship of 1839. This work was carried out independently of Sir Francis Pettit Smith, who contemporaneously developed a four-bladed propeller that was adopted by the British Admiralty. Ericsson saw that with screw propulsion the engine could be below the waterline, a distinct advantage in warships. He crossed the Atlantic to interest the American government in his ideas and became a naturalized citizen in 1848. He pioneered the gun turret for mounting heavy guns on board ship. Ericsson came into his own during the American Civil War, with the construction of the epoch-making warship Monitor, a screw-propelled ironclad with gun turret. This vessel demonstrated its powers in a signal victory at Hampton Roads on 9 March 1862.
    Ericsson continued to design warships and torpedoes, pointing out to President Lincoln that success in war would now depend on technological rather than numerical superiority. Meanwhile he continued to pursue his interest in heat engines, and from 1870 to 1888 he spent much of his time and resources in pursuing research into alternative energy sources, such as solar power, gravitation and tidal forces.
    [br]
    Further Reading
    W.C.Church, 1891, Life of John Ericsson, 2 vols, London.
    LRD

    Biographical history of technology > Ericsson, John

  • 14 Lucas, Anthony Francis

    [br]
    b. 9 September 1855 Spalato, Dalmatia, Austria-Hungary (now Split, Croatia)
    d. 2 September 1921 Washington, DC, USA
    [br]
    Austrian (naturalized American) mining engineer who successfully applied rotary drilling to oil extraction.
    [br]
    A former Second Lieutenant of the Austrian navy (hence his later nickname "Captain") and graduate of the Polytechnic Institute of Graz, Lucas decided to stay in Michigan when he visited his relatives in 1879. He changed his original name, Lucie, into the form his uncle had adopted and became a naturalized American citizen at the age of 30. He worked in the lumber industry for some years and then became a consulting mechanical and mining engineer in Washington, DC. He began working for a salt-mining company in Louisiana in 1893 and became interested in the geology of the Mexican Gulf region, with a view to prospecting for petroleum. In the course of this work he came to the conclusion that the hills in this elevated area, being geological structures distinct from the surrounding deposits, were natural reservoirs of petroleum. To prove his unusual theory he subsequently chose Spindle Top, near Beaumont, Texas, where in 1899 he began to bore a first oil-well. A second drill-hole, started in October 1900, was put through clay and quicksand. After many difficulties, a layer of rock containing marine shells was reached. When the "gusher" came out on 10 January 1901, it not only opened up a new era in the oil and gas business, but it also led to the future exploration of the terrestrial crust.
    Lucas's boring was a breakthrough for the rotary drilling system, which was still in its early days although its principles had been established by the English engineer Robert Beart in his patent of 1884. It proved to have advantages over the pile-driving of pipes. A pipe with a simple cutter at the lower end was driven with a constantly revolving motion, grinding down on the bottom of the well, thus gouging and chipping its way downward. To deal with the quicksand he adopted the use of large and heavy casings successively telescoped one into the other. According to Fauvelle's method, water was forced through the pipe by means of a pump, so the well was kept full of circulating liquid during drilling, flushing up the mud. When the salt-rock was reached, a diamond drill was used to test the depth and the character of the deposit.
    When the well blew out and flowed freely he developed a preventer in order to save the oil and, even more importantly at the time, to shut the well and to control the oil flow. This assembly, patented in 1903, consisted of a combined system of pipes, valves and casings diverting the stream into a horizontal direction.
    Lucas's fame spread around the world, but as he had to relinquish the larger part of his interest to the oil company supporting the exploration, his financial reward was poor. One year after his success at Spindle Top he started oil exploration in Mexico, where he stayed until 1905, when he resumed his consulting practice in Washington, DC.
    [br]
    Bibliography
    1899, "Rock-salt in Louisiana", Transactions of the American Institution of Mining Engineers 29:462–74.
    1902, "The great oil-well near Beaumont, Texas", Transactions of the American
    Institution of Mining Engineers 31:362–74.
    Further Reading
    R.S.McBeth, 1918, Pioneering the Gulf Coast, New York (a very detailed description of Lucas's important accomplishments in the development of the oil industry).
    R.T.Hill, 1903, "The Beaumont oil-field, with notes on other oil-fields of the Texas region", Transactions of the American Institution of Mining Engineers 33:363–405;
    Transactions of the American Institution of Mining Engineers 55:421–3 (contain shorter biographical notes).
    WK

    Biographical history of technology > Lucas, Anthony Francis

  • 15 Momma (Mumma), Jacob

    SUBJECT AREA: Metallurgy
    [br]
    b. early seventeenth century Germany
    d. 1679 England
    [br]
    German (naturalized English) immigrant skilled in the manufacture and production of brass, who also mined and smelted copper.
    [br]
    The protestant Momma family were well known in Aachen, the seventeenth-century centre of German brass production. Subjected to religious pressures, some members of the family moved to nearby Stolberg, while others migrated to Sweden, starting brass manufacture there. Jacob travelled to England, establishing brassworks with two German partners at Esher in Surrey in 1649; theirs was the only such works in England to survive for more than a few years during the seventeenth century.
    Jacob, naturalized English by 1660, is often referred to in England as Mummer or another variant of his name. He became respected, serving as a juror, and was appointed a constable in 1661. During the 1660s Momma was engaged in mining copper at Ecton Hill, Staffordshire, where he was credited with introducing gunpowder to English mining technology. He smelted his ore at works nearby in an effort to secure copper supplies, but the whole project was brief and unprofitable.
    The alternative imported copper required for his brass came mainly from Sweden, its high cost proving a barrier to viable English brass production. In 1662 Momma petitioned Parliament for some form of assistance. A year later he pleaded further for higher tariffs against brass-wire imports as protection from the price manipulation of Swedish exporters. He sought support from the Society of Mineral and Battery Works, the Elizabethan monopoly (see Dockwra, William) claiming jurisdiction over the country's working of brass, but neither petition succeeded. Despite these problems with the high cost of copper supplies in England, Momma continued his business and is recorded as still paying hearth tax on his twenty brass furnaces up to 1664. Although these were abandoned before his death and he claimed to have lost £6,000 on his brassworks, his wire mills survived him for a few years under the management of his son.
    [br]
    Further Reading
    J.Morton, 1985, The rise of the modern copper and brass industry: 1690 to 1750, unpublished thesis: University of Birmingham, 16–25.
    J.Day, 1984, "The continental origins of Bristol Brass", Industrial Archaeology Review 8/1: 32–56.
    John Robey, 1969, "Ecton copper mines in the seventeenth century", Bulletin of the Peak District Mines Historic Society 4(2):145–55 (the most comprehensive published account).
    JD

    Biographical history of technology > Momma (Mumma), Jacob

  • 16 Bothe, Walter Wilhelm Georg Franz

    SUBJECT AREA: Weapons and armour
    [br]
    b. 8 January 1891 Oranienburg, Berlin, Germany
    d. 8 February 1957 Heidelberg, Germany
    [br]
    German nuclear scientist.
    [br]
    Bothe studied under Max Planck at the University of Berlin, gaining his doctorate in 1914. After military service during the First World War, he resumed his investigations into nuclear physics and achieved a breakthrough in 1929 when he developed a method of studying cosmic radiation by placing one Geiger counter on top of another. From this he evolved the means of high-speed counting known as "coincidence counting". The following year, in conjunction with Hans Becker, Bothe made a Further stride forward when they identified a very penetrative neutral particle by bombarding beryllium with alpha particles; this was a significant advance towards creating nuclear energy in that the neutral particle was what Chadwick later identified as the neutron.
    In 1934 Bothe's achievements were recognized by his appointment as Director of the Max Planck Institute for Medical Research, although this was after Planck himself had been deposed because of his Jewish sympathies. Bothe did, however, become primarily involved in Germany's pursuit of the atomic bomb and in 1944 constructed Germany's first cyclotron for accelerating nuclear particles. By that time Germany was faced with military defeat and Bothe was not able to develop his ideas further. Even so, for his work in the field of cosmic radiation Bothe shared the 1954 Nobel Prize for Physics with the naturalized Briton (formerly German) Max Born, whose subject was statistical mechanics.
    [br]
    Principal Honours and Distinctions
    Co-winner of the Nobel Prize for Physics 1954.
    CM

    Biographical history of technology > Bothe, Walter Wilhelm Georg Franz

  • 17 Bulleid, Oliver Vaughan Snell

    [br]
    b. 19 September 1882 Invercargill, New Zealand
    d. 25 April 1970 Malta
    [br]
    New Zealand (naturalized British) locomotive engineer noted for original experimental work in the 1940s and 1950s.
    [br]
    Bulleid's father died in 1889 and mother and son returned to the UK from New Zealand; Bulleid himself became a premium apprentice under H.A. Ivatt at Doncaster Works, Great Northern Railway (GNR). After working in France and for the Board of Trade, Bulleid returned to the GNR in 1912 as Personal Assistant to Chief Mechanical Engineer H.N. Gresley. After a break for war service, he returned as Assistant to Gresley on the latter's appointment as Chief Mechanical Engineer of the London \& North Eastern Railway in 1923. He was closely associated with Gresley during the late 1920s and early 1930s.
    In 1937 Bulleid was appointed Chief Mechanical Engineer of the Southern Railway (SR). Concentration of resources on electrification had left the Southern short of up-to-date steam locomotives, which Bulleid proceeded to provide. His first design, the "Merchant Navy" class 4–6– 2, appeared in 1941 with chain-driven valve gear enclosed in an oil-bath, and other novel features. A powerful "austerity" 0−6−0 appeared in 1942, shorn of all inessentials to meet wartime conditions, and a mixed-traffic 4−6−2 in 1945. All were largely successful.
    Under Bulleid's supervision, three large, mixed-traffic, electric locomotives were built for the Southern's 660 volt DC system and incorporated flywheel-driven generators to overcome the problem of interruptions in the live rail. Three main-line diesel-electric locomotives were completed after nationalization of the SR in 1948. All were carried on bogies, as was Bulleid's last steam locomotive design for the SR, the "Leader" class 0−6−6−0 originally intended to meet a requirement for a large, passenger tank locomotive. The first was completed after nationalization of the SR, but the project never went beyond trials. Marginally more successful was a double-deck, electric, suburban, multiple-unit train completed in 1949, with alternate high and low compartments to increase train capacity but not length. The main disadvantage was the slow entry and exit by passengers, and the type was not perpetuated, although the prototype train ran in service until 1971.
    In 1951 Bulleid moved to Coras Iompair Éireann, the Irish national transport undertaking, as Chief Mechanical Engineer. There he initiated a large-scale plan for dieselization of the railway system in 1953, the first such plan in the British Isles. Simultaneously he developed, with limited success, a steam locomotive intended to burn peat briquettes: to burn peat, the only native fuel, had been a long-unfulfilled ambition of railway engineers in Ireland. Bulleid retired in 1958.
    [br]
    Bibliography
    Bulleid took out six patents between 1941 and 1956, covering inter alia valve gear, boilers, brake apparatus and wagon underframes.
    Further Reading
    H.A.V.Bulleid, 1977, Bulleid of the Southern, Shepperton: Ian Allan (a good biography written by the subject's son).
    C.Fryer, 1990, Experiments with Steam, Wellingborough: Patrick Stephens (provides details of the austerity 0–6–0, the "Leader" locomotive and the peat-burning locomotive: see Chs 19, 20 and 21 respectively).
    PJGR

    Biographical history of technology > Bulleid, Oliver Vaughan Snell

  • 18 Gabor, Dennis (Dénes)

    [br]
    b. 5 June 1900 Budapest, Hungary
    d. 9 February 1979 London, England
    [br]
    Hungarian (naturalized British) physicist, inventor of holography.
    [br]
    Gabor became interested in physics at an early age. Called up for military service in 1918, he was soon released when the First World War came to an end. He then began a mechanical engineering course at the Budapest Technical University, but a further order to register for military service prompted him to flee in 1920 to Germany, where he completed his studies at Berlin Technical University. He was awarded a Diploma in Engineering in 1924 and a Doctorate in Electrical Engineering in 1927. He then went on to work in the physics laboratory of Siemens \& Halske. He returned to Hungary in 1933 and developed a new kind of fluorescent lamp called the plasma lamp. Failing to find a market for this device, Gabor made the decision to abandon his homeland and emigrate to England. There he joined British Thompson-Houston (BTH) in 1934 and married a colleague from the company in 1936. Gabor was also unsuccessful in his attempts to develop the plasma lamp in England, and by 1937 he had begun to work in the field of electron optics. His work was interrupted by the outbreak of war in 1939, although as he was not yet a British subject he was barred from making any significant contribution to the British war effort. It was only when the war was near its end that he was able to return to electron optics and begin the work that led to the invention of holography. The theory was developed during 1947 and 1948; Gabor went on to demonstrate that the theories worked, although it was not until the invention of the laser in 1960 that the full potential of his invention could be appreciated. He coined the term "hologram" from the Greek holos, meaning complete, and gram, meaning written. The three-dimensional images have since found many applications in various fields, including map making, medical imaging, computing, information technology, art and advertising. Gabor left BTH to become an associate professor at the Imperial College of Science and Technology in 1949, a position he held until his retirement in 1967. In 1971 he was awarded the Nobel Prize for Physics for his work on holography.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Medal 1968. Franklin Institute Michelson Medal 1968. CBE 1970. Nobel Prize for Physics 1971.
    Bibliography
    1948. "A new microscopic principle", Nature 161:777 (Gabor's earliest publication on holography).
    1949. "Microscopy by reconstructed wavefronts", Proceedings of the Royal Society A197: 454–87.
    1951, "Microscopy by reconstructed wavefronts II", Proc. Phys. Soc. B, 64:449–69. 1966, "Holography or the “Whole Picture”", New Scientist 29:74–8 (an interesting account written after laser beams were used to produce optical holograms).
    Further Reading
    T.E.Allibone, 1980, contribution to Biographical Memoirs of Fellows of the Royal Society 26: 107–47 (a full account of Gabor's life and work).
    JW

    Biographical history of technology > Gabor, Dennis (Dénes)

  • 19 Issigonis, Sir Alexander Arnold Constantine (Alec)

    [br]
    b. 18 November 1906 Smyrna (now Izmir), Turkey
    d. 2 October 1988 Birmingham, England
    [br]
    British automobile designer whose work included the Morris Minor and the Mini series.
    [br]
    His father was of Greek descent but was a naturalized British subject in Turkey who ran a marine engineering business. After the First World War, the British in Turkey were evacuated by the Royal Navy, the Issigonis family among them. His father died en route in Malta, but the rest of the family arrived in England in 1922. Alec studied engineering at Battersea Polytechnic for three years and in 1928 was employed as a draughtsman by a firm of consulting engineers in Victoria Street who were working on a form of automatic transmission. He had occasion to travel frequently in the Midlands at this time and visited many factories in the automobile industry. He was offered a job in the drawing office at Humber and lived for a couple of years in Kenilworth. While there he met Robert Boyle, Chief Engineer of Morris Motors (see Morris, William Richard), who offered him a job at Cowley. There he worked at first on the design of independent front suspension. At Morris Motors, he designed the Morris Minor, which entered production in 1948 and continued to be manufactured until 1971. Issigonis disliked mergers, and after the merger of Morris with Austin to form the British Motor Corporation (BMC) he left to join Alvis in 1952. The car he designed there, a V8 saloon, was built as a prototype but was never put into production. Following his return to BMC to become Technical Director in 1955, his most celebrated design was the Mini series, which entered production in 1959. This was a radically new concept: it was unique for its combination of a transversely mounted engine in unit with the gearbox, front wheel drive and rubber suspension system. This suspension system, designed in cooperation with Alex Moulton, was also a fundamental innovation, developed from the system designed by Moulton for the earlier Alvis prototype. Issigonis remained as Technical Director of BMC until his retirement.
    [br]
    Further Reading
    Peter King, 1989, The Motor Men. Pioneers of the British Motor Industry, London: Quiller Press.
    IMcN

    Biographical history of technology > Issigonis, Sir Alexander Arnold Constantine (Alec)

  • 20 Kompfner, Rudolph

    [br]
    b. 16 May 1909 Vienna, Austria
    d. 3 December 1977 Stanford, California, USA
    [br]
    Austrian (naturalized English in 1949, American in 1957) electrical engineer primarily known for his invention of the travelling-wave tube.
    [br]
    Kompfner obtained a degree in engineering from the Vienna Technische Hochschule in 1931 and qualified as a Diplom-Ingenieur in Architecture two years later. The following year, with a worsening political situation in Austria, he moved to England and became an architectural apprentice. In 1936 he became Managing Director of a building firm owned by a relative, but at the same time he was avidly studying physics and electronics. His first patent, for a television pick-up device, was filed in 1935 and granted in 1937, but was not in fact taken up. In June 1940 he was interned on the Isle of Man, but as a result of a paper previously sent by him to the Editor of Wireless Engineer he was released the following December and sent to join the group at Birmingham University working on centimetric radar. There he worked on klystrons, with little success, but as a result of the experience gained he eventually invented the travelling-wave tube (TWT), which was based on a helical transmission line. After disbandment of the Birmingham team, in 1946 Kompfner moved to the Clarendon Laboratory at Oxford and in 1947 he became a British subject. At the Clarendon Laboratory he met J.R. Pierce of Bell Laboratories, who worked out the theory of operation of the TWT. After gaining his DPhil at Oxford in 1951, Kompfner accepted a post as Principal Scientific Officer at Signals Electronic Research Laboratories, Baldock, but very soon after that he was invited by Pierce to work at Bell on microwave tubes. There, in 1952, he invented the backward-wave oscillator (BWO). He was appointed Director of Electronics Research in 1955 and Director of Communications Research in 1962, having become a US citizen in 1957. In 1958, with Pierce, he designed Echo 1, the first (passive) satellite, which was launched in August 1960. He was also involved with the development of Telstar, the first active communications satellite, which was launched in 1962. Following his retirement from Bell in 1973, he continued to pursue research, alternately at Stanford, California, and Oxford, England.
    [br]
    Principal Honours and Distinctions
    Physical Society Duddell Medal 1955. Franklin Institute Stuart Ballantine Medal 1960. Institute of Electrical and Electronics Engineers David Sarnoff Award 1960. Member of the National Academy of Engineering 1966. Member of the National Academy of Science 1968. Institute of Electrical and Electronics Engineers Medal of Honour 1973. City of Philadelphia John Scott Award 1974. Roentgen Society Silvanus Thompson Medal 1974. President's National medal of Science 1974. Honorary doctorates Vienna 1965, Oxford 1969.
    Bibliography
    1944, "Velocity modulated beams", Wireless Engineer 17:262.
    1942, "Transit time phenomena in electronic tubes", Wireless Engineer 19:3. 1942, "Velocity modulating grids", Wireless Engineer 19:158.
    1946, "The travelling-wave tube", Wireless Engineer 42:369.
    1964, The Invention of the TWT, San Francisco: San Francisco Press.
    Further Reading
    J.R.Pierce, 1992, "History of the microwave tube art", Proceedings of the Institute of Radio Engineers: 980.
    KF

    Biographical history of technology > Kompfner, Rudolph

См. также в других словарях:

  • subject — I adj. (cannot stand alone) subject to (subject to change) II n. topic, theme 1) to bring up, broach; pursue; tackle a subject 2) to address, cover, deal with, discuss, take up, treat a subject 3) to dwell on; exhaust; go into a subject 4) to… …   Combinatory dictionary

  • Naturalized — Naturalize Nat u*ral*ize (?; 135), v. t. [imp. & p. p. {Naturalized}; p. pr. & vb. n. {Naturalizing}.] [Cf. F. naturaliser. See {Natural}.] 1. To make natural; as, custom naturalizes labor or study. [1913 Webster] 2. To confer the rights and… …   The Collaborative International Dictionary of English

  • subject — Synonyms and related words: IC analysis, above, academic specialty, action, actor, affair, agent, anagnorisis, angle, answerable to, application, appositive, apt, architect, architectonics, architecture, area, argument, atmosphere, attribute,… …   Moby Thesaurus

  • subject to the jurisdiction thereof — A phrase made familiar by inclusion in the Fourteenth Amendment. As these words are used in the first section of the Fourteenth Amendment of the Federal Constitution, providing for the citizenship of all persons born or naturalized in the United… …   Ballentine's law dictionary

  • denizen — /denazan/ In English law, a person who, being an alien born, has obtained, ex donatione regis, letters patent to make him an English subject, a high and incommunicable branch of the royal prerogative. A denizen is in a kind of middle state… …   Black's law dictionary

  • denizen — /denazan/ In English law, a person who, being an alien born, has obtained, ex donatione regis, letters patent to make him an English subject, a high and incommunicable branch of the royal prerogative. A denizen is in a kind of middle state… …   Black's law dictionary

  • John Misaubin — John (Jean) Misaubin (1673–20 April 1734) was an 18th century Huguenot French and British physician and quack. He was born in Mussidan, in the Dordogne in France. His father was a Protestant clergyman who later preached in the French Church in… …   Wikipedia

  • Mountbatten-Windsor — Britische Königsfamilie HM The Queen HRH The Duke of Edinburgh HRH The Prince of Wales HRH The Duchess of Cornwall …   Deutsch Wikipedia

  • Victoria Kamāmalu — For other people with similar names, see Kaahumanu (disambiguation) and Kamāmalu. Victoria Kamāmalu Crown Princess of the Hawaiian Islands and Kuhina Nui of the Hawaiian Islands Hawaiian …   Wikipedia

  • Citizenship in the United States — United States citizenship confers the right to acquire a U.S. passport.[1] Citizenship in the United States is a status given to individuals that entails specific rights, duties, privileges, and benefits between the United States and the… …   Wikipedia

  • United States nationality law — This article is about laws regarding US citizenship. For citizenship in general, see Citizenship in the United States. Physicist Albert Einstein receiving his certificate of American citizenship from Judge Phillip Forman in 1940. He also retained …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»